MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Augmenting physics simulators with neural networks for model learning and control

Author(s)
Ajay, Anurag.
Thumbnail
Download1124767014-MIT.pdf (7.284Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Leslie P. Kaelbling and Joshua B. Tenenbaum.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Physics simulators play an important role in robot state estimation, planning and control; however, many real-world control problems involve complex contact dynamics that cannot be characterized analytically. Therefore, most physics simulators employ approximations that lead to a loss in precision. We propose a hybrid dynamics model, combining a deterministic physical simulator with a stochastic neural network for dynamics modeling as it provides us with expressiveness, efficiency, and generalizability simultaneously. To demonstrate this, we compare our hybrid model to both purely analytical models and purely learned models. We then show that our model is able to characterize the complex distribution of object trajectories and compare it with existing methods. We further build in object based representation into the neural network so that our hybrid model can generalize across number of objects. Finally, we use our hybrid model to complete complex control tasks in simulation and on a real robot and show that our model generalizes to novel environments with varying object shapes and materials.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 77-81).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122747
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.